AdvancedSearch
LIU Yan, YOU Qi-shen, ZHU Hong-mei, ZHANG Lin-jie, ZHANG Jian-xun. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization[J]. Powder Metallurgy Technology, 2021, 39(6): 537-544. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120013
Citation: LIU Yan, YOU Qi-shen, ZHU Hong-mei, ZHANG Lin-jie, ZHANG Jian-xun. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization[J]. Powder Metallurgy Technology, 2021, 39(6): 537-544. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120013

Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization

More Information
  • Corresponding author:

    ZHANG Jian-xun, E-mail: jxzhang@mail.xjtu.edu.cn

  • Received Date: December 24, 2019
  • Available Online: October 31, 2021
  • The effects of the electrode induction gas atomization parameters (atomization pressure, gas temperature, and melting power) on the particle size distribution, powder fluidity, and yield of the new high hardness martensitic iron-based alloy powders were studied by orthogonal test. The results show that, the particle size distribution is mainly affected by the atomization pressure, while the fluidity and yield of the powders are affected by the atomization pressure and the gas temperature. When the atomization pressure is 1.5 MPa, the melting power is 15 kW, and the atomization gas temperature is 40 ℃, the powders have the largest powder yield, the mass proportion of powders with the particle size of 53~180 μm accounts for 68.24%, and the powders show the well powder fluidity, the standard deviation of powder size distribution, and the best powder morphology.
  • [1]
    朱胜, 周超极. 面向“中国制造2025”的增材再制造技术. 热喷涂技术, 2016, 8(3): 1

    Zhu S, Zhou C J. Additive remanufacturing for “Made in China 2025”. Therm Spray Technol, 2016, 8(3): 1
    [2]
    Strondl A, Lyckfeldt O, Brodin H, et al. Characterization and control of powder properties for additive manufacturing. JOM, 2015, 67(3): 549 DOI: 10.1007/s11837-015-1304-0
    [3]
    Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium-past, present, and future. Int Mater Rev, 2017, 63(7): 407
    [4]
    王琪, 李圣刚, 吕宏, 等. 雾化法制备高品质钛合金粉末技术研究. 钛工业进展, 2010, 27(5): 17

    Wang Q, Li S G, Lü H, et al. Research on high quality titanium alloy powder production by atomization technology. Titanium Ind Prog, 2010, 27(5): 17
    [5]
    欧阳鸿武, 陈欣, 余文焘, 等. 气雾化制粉技术发展历程及展望. 粉末冶金技术, 2007, 25(1): 53 DOI: 10.3321/j.issn:1001-3784.2007.01.013

    Ouyang H W, Chen X, Yu W T, et al. Progress and prospect on the gas atomization. Powder Metall Technol, 2007, 25(1): 53 DOI: 10.3321/j.issn:1001-3784.2007.01.013
    [6]
    徐良辉, 周香林, 李景昊. 金属粉末气雾化技术研究新进展. 热喷涂技术, 2008, 10(2): 1

    Xu L H, Zhou X L, Li J H. The study progress of metal powder gas atomization technology. Therm Spray Technol, 2008, 10(2): 1
    [7]
    胡云飞, 李景昊, 周香林. 气雾化过程中合金熔滴的凝固行为研究进展. 热喷涂技术, 2008, 10(1): 1

    Hu Y F, Li J H, Zhou X L. Research progress on solidification behavior of alloy droplets during the process of atomization. Therm Spray Technol, 2008, 10(1): 1
    [8]
    陈仕奇, 黄伯云. 金属粉末气体雾化制备技术的研究现状与进展. 粉末冶金技术, 2004, 22(5): 297 DOI: 10.3321/j.issn:1001-3784.2004.05.009

    Chen S Q, Huang B Y. The status and development of gas atomization for production of metal powders. Powder Metall Technol, 2004, 22(5): 297 DOI: 10.3321/j.issn:1001-3784.2004.05.009
    [9]
    吴文恒, 吴凯琦, 肖逸凡, 等. 雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001

    Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powder used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
    [10]
    Dowson A G. Atomization dominates powder production. Met Powder Rep, 1999, 54(1): 15 DOI: 10.1016/S0026-0657(99)80162-3
    [11]
    张曙光, 杨必成, 杨博, 等. 新型超声雾化技术制备球形金属粉末. 金属学报, 2002, 38(8): 888 DOI: 10.3321/j.issn:0412-1961.2002.08.022

    Zhang S G, Yang B C, Yang B, et al. A novel ultrasonic atomization process for producing spherical metal powder. Acta Metall Sin, 2002, 38(8): 888 DOI: 10.3321/j.issn:0412-1961.2002.08.022
    [12]
    原光. 面向增材制造的球形金属粉的制备、表征与应用[学位论文]. 南京: 南京理工大学, 2015

    Yuan G. Preparation, Characterization and Application of Spherical Metal Powder for Additive Manufacturing [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2015
    [13]
    郭快快, 刘常升, 陈岁元, 等. 功率对EIGA制备3D打印用TC4合金粉末特性的影响. 材料科学与工艺, 2017, 25(1): 16 DOI: 10.11951/j.issn.1005-0299.20160377

    Guo K K, Liu C S, Chen S Y, et al. Effect of EIGA power parameter on the characteristics of TC4 alloy powder for 3D printing. Mater Sci Technol, 2017, 25(1): 16 DOI: 10.11951/j.issn.1005-0299.20160377
    [14]
    杨敏. 气雾化铁−碳系合金粉体组织演化及其形成研究[学位论文]. 上海: 上海大学, 2010

    Yang M. Research on Microstructure Evolution and Formation of Fe−C Based Powders by Gas Atomization [Dissertation]. Shanghai: Shanghai University, 2010
    [15]
    German R M. Powder Metallurgy Science. Princeton NJ: Metal Powder Industries Federation, 1994
    [16]
    Lubanska H. Correlation of spray ring data for gas atomization of liquid metals. JOM, 1970, 22(2): 45 DOI: 10.1007/BF03355938
    [17]
    谈慕华, 黄蕴元. 表面物理化学. 北京: 中国建筑工业出版社, 1985

    Tan M H, Huang Y Y. Surface Physical Chemistry. Beijing: China Building Industry Press, 1985
    [18]
    龙倩蕾, 吴文恒, 卢林, 等. 熔炼功率对 EIGA 制备 Ti−6Al−4V 合金粉末特性的影响. 中国粉体技术, 2018, 24(4): 49

    Long Q L, Wu W H, Lu L, et al. Effect of power on properties of Ti−6Al−4V alloy powder prepared by EIGA process. China Powder Sci Technol, 2018, 24(4): 49
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (568) PDF downloads (98) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return