AdvancedSearch
YOU Li, LIU Yan-jun, PAN Yu, SUN Jian-zhuo, HUI Tai-long, YANG Yu-cheng, YU Ai-hua, LIU Bo-wen, LI Wei-bin, LU Xin. Research progress of titanium alloy binder system for powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(6): 563-572. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090009
Citation: YOU Li, LIU Yan-jun, PAN Yu, SUN Jian-zhuo, HUI Tai-long, YANG Yu-cheng, YU Ai-hua, LIU Bo-wen, LI Wei-bin, LU Xin. Research progress of titanium alloy binder system for powder injection molding[J]. Powder Metallurgy Technology, 2021, 39(6): 563-572. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090009

Research progress of titanium alloy binder system for powder injection molding

More Information
  • Corresponding author:

    LIU Yan-jun, E-mail: yanjunliu_123@163.com

  • Received Date: September 10, 2020
  • Available Online: July 25, 2021
  • Titanium and titanium alloys have the low specific gravity, high specific strength, excellent biocompatibility, and good corrosion resistance, showing the great application potential in the aerospace, biomedicine, chemical engineering, shipbuilding, automobile, and other fields. The powder injection molding (PIM) technology used for titanium alloys increases the utilization rate of materials, realizes the large-scale and low-cost preparation of small and medium-sized titanium products with complex shape, and significantly promotes the development of titanium and its alloys. At present, there are few reports about the titanium alloy binder system for powder injection molding, and the development of new type titanium alloy binder system for powder injection molding is in a stagnating state. The research status of the different titanium alloy binder systems for powder injection molding was introduced in this paper, and some improvements for the existing problems were suggested as the reference for researchers.
  • [1]
    Dehghan-Manshadi A, Stjohn D, Dargusch M S, et al. Metal injection moulding of non-spherical titanium powders: Processing, microstructure and mechanical properties. J Manuf Process, 2018, 31: 416 DOI: 10.1016/j.jmapro.2017.12.004
    [2]
    Xu W, Lu X, Wang L N, et al. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti− 12Mo alloy for dental applications. J Mech Behav Biomed Mater, 2018, 88: 534 DOI: 10.1016/j.jmbbm.2018.08.038
    [3]
    张宝柱, 孙洁琼. 钛合金在典型民用飞机机体结构上的应用现状. 航空工业进展, 2014, 5(3): 275

    Zhang B Z, Sun J Q. Recent applications of titanium alloys in typical commercial aircraft fuselage structure. Adv Aeronaut Sci Eng, 2014, 5(3): 275
    [4]
    Dehghan-Manshadi A, Bermingham M, Dargusch M, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 DOI: 10.1016/j.powtec.2017.06.053
    [5]
    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012

    Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 DOI: 10.3969/j.issn.1001-3784.2017.02.012
    [6]
    Aust E, Limberg W, Gerling R, et al. Advanced TiAl6Nb7 bone screw implant fabricated by metal injection moulding. Adv Eng Mater, 2006, 8(5): 365 DOI: 10.1002/adem.200500134
    [7]
    Fu G, Loh N H, Tor S B, et al. Replication of metal microstructures by micro powder injection molding. Mater Des, 2004, 25(8): 729 DOI: 10.1016/j.matdes.2004.01.013
    [8]
    Ye S, Mo W, Lü Y, et al. Metal injection molding of thin-walled titanium glasses arms: A case study. JOM, 2018, 70(5): 616 DOI: 10.1007/s11837-018-2788-1
    [9]
    Ye S, Mo W, Lü Y, et al. The technological design of geometrically complex Ti−6Al−4V parts by metal injection molding. Appl Sci, 2019, 9: 1339 DOI: 10.3390/app9071339
    [10]
    路新, 刘程程, 曲选辉. 钛及钛合金粉末注射成形技术研究进展. 粉末冶金技术, 2013, 31(2): 139 DOI: 10.3969/j.issn.1001-3784.2013.02.011

    Lu X, Liu C C, Qu X H. Research progresses of powder injection molding for titanium alloys. Powder Metall Technol, 2013, 31(2): 139 DOI: 10.3969/j.issn.1001-3784.2013.02.011
    [11]
    Wen G, Cao P, Gabbitas B, et al. Development and design of binder systems for titanium metal injection molding: an overview. Metall Mater Trans A, 2013, 44(3): 1530 DOI: 10.1007/s11661-012-1485-x
    [12]
    Froes F H S. Advances in titanium metal injection molding. Powder Metall Met Ceram, 2007, 46(5-6): 303 DOI: 10.1007/s11106-007-0048-y
    [13]
    Nyberg E, Miller M, Simmons K, et al. Microstructure and mechanical properties of titanium components fabricated by a new powder injection molding technique. Mater Sci Eng C, 2005, 25(3): 336 DOI: 10.1016/j.msec.2005.04.006
    [14]
    Gerling R, Aust E, Limberg M, et al. Metal injection moulding of gamma titanium aluminide alloy powder. Mater Sci Eng A, 2006, 423(1-2): 262 DOI: 10.1016/j.msea.2006.02.002
    [15]
    Obasi G C, Ferri O M, Ebel T, et al. Influence of processing parameters on mechanical properties of Ti− 6Al− 4V alloy fabricated by MIM. Mater Sci Eng A, 2010, 527(16-17): 3929 DOI: 10.1016/j.msea.2010.02.070
    [16]
    Guo S B, Duan B H, He X B, et al. Powder injection molding of pure titanium. Rare Met, 2009, 28(3): 261 DOI: 10.1007/s12598-009-0052-0
    [17]
    Liu C C, Lu X, Yang F, et al. Metal injection moulding of high Nb-containing TiAl alloy and its oxidation behaviour at 900 ℃. Metals, 2018, 8(3): 163 DOI: 10.3390/met8030163
    [18]
    Friederici V, Bruinink A, Imgrund P, et al. Getting the powder mix right for design of bone implants. Met Powder Rep, 2010, 65(7): 14 DOI: 10.1016/S0026-0657(11)70041-8
    [19]
    Wang J H, Shi Q N, Wu C L, et al. Rheological characteristics of injection molded titanium alloys powder. Trans Nonferrous Met Soc China, 2013, 23(9): 2605 DOI: 10.1016/S1003-6326(13)62774-0
    [20]
    李洋, 张心强, 朱君, 等. Ti− Mo吸气材料注射成形脱脂工艺的研究. 功能材料, 2014, 45(2): 2110 DOI: 10.3969/j.issn.1001-9731.2014.02.023

    Li Y, Zhang X Q, Zhu J, et al. Study on debinding process of Ti− Mo getter material by powder injection molding. J Funct Mater, 2014, 45(2): 2110 DOI: 10.3969/j.issn.1001-9731.2014.02.023
    [21]
    Carrño-Morelli E, Bidaux J E, Rodríguez-Arbaizar M, et al. Production of titanium grade 4 components by powder injection moulding of titanium hydride. Powder Metall, 2014, 57(2): 89 DOI: 10.1179/0032589914Z.000000000165
    [22]
    Krug S, Evans J R G, Maat J H H T. Residual stresses and cracking in large ceramic injection mouldings subjected to different solidification schedules. J Eur Ceram Soc, 2000, 20(14-15): 2535 DOI: 10.1016/S0955-2219(00)00120-5
    [23]
    Krug S, Evans J R G, Maat J H H T. Transient effects during catalytic binder removal in ceramic injection moulding. J Eur Ceram Soc, 2001, 21(12): 2275 DOI: 10.1016/S0955-2219(00)00312-5
    [24]
    章诚, 刘春林. 金属粉末注射成型催化脱脂料POM/PP/Ti的流变行为及脱脂工艺. 热加工工艺, 2017, 46(24): 45

    Zhang C, Liu C L. Rheological behavior and degreasing process of polyformaldehyde/polypropylene/titanium catalytic degreasing material for metal powder injection molding. Hot Working Technol, 2017, 46(24): 45
    [25]
    罗浩, 宗伟, 周晚珠, 等. 注射成形聚甲醛基In713C高温合金喂料流变行为的研究. 材料研究与应用, 2016, 10(3): 205 DOI: 10.3969/j.issn.1673-9981.2016.03.011

    Luo H, Zong W, Zhou W Z, et al. Analysis of rheological behavior of catalytic debinding feedstocks for In713C superalloy metal injection molding. Mater Res Appl, 2016, 10(3): 205 DOI: 10.3969/j.issn.1673-9981.2016.03.011
    [26]
    朱海洋, 周淑千, 宋善寒, 等. 新型POM/PE合金喂料的流变特性. 材料科学与工程学报, 2018, 36(1): 103

    Zhu H Y, Zhou S Q, Song S H, et al. Rheological properties of new type POM/PE alloy feedstocks. J Mater Sci Eng, 2018, 36(1): 103
    [27]
    Gonzalez-Gutierrez J, Stringari G B, Megen Z M, et al. Selection of appropriate polyoxymethylene based binder for feedstock material used in powder injection moulding. J Phys Conf Ser, 2015, 602(1): 012001
    [28]
    Sidambe A T, Figueroa I A, Hamilton H, et al. Metal injection moulding of Ti-64 components using a water soluble binder. PIM Int, 2010, 4(4): 56
    [29]
    Hayat M D, Wen G, Zulkifli M F, et al. Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behaviour. Powder Technol, 2015, 270: 296 DOI: 10.1016/j.powtec.2014.10.035
    [30]
    Hayat M D, Li T, Cao P. Incorporation of PVP into PEG/PMMA based binder system to minimize void nucleation. Mater Des, 2015, 87: 932 DOI: 10.1016/j.matdes.2015.08.131
    [31]
    Hayat M D, Goswami A, Matthews S, et al. Modification of PEG/PMMA binder by PVP for titanium metal injection moulding. Powder Technol, 2017, 315: 243 DOI: 10.1016/j.powtec.2017.04.004
    [32]
    Thavanayagam G, Pickering K L, Swan J E, et al. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol, 2015, 269: 227 DOI: 10.1016/j.powtec.2014.09.020
    [33]
    Thavanayagam G, Swan J E. Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technol, 2018, 326: 402 DOI: 10.1016/j.powtec.2017.11.069
    [34]
    Hayat M D, Jadhav P P, Zhang H, et al. Improving titanium injection moulding feedstock based on PEG/PPC based binder system. Powder Technol, 2018, 330: 304 DOI: 10.1016/j.powtec.2018.02.043
    [35]
    郭世柏, 曲选辉. 金属注射成形粘结剂的研究进展. 粉末冶金技术, 2004, 3: 178 DOI: 10.3321/j.issn:1001-3784.2004.03.012

    Guo S B, Quan X H. Research progress in binders used for metal injection molding. Powder Metall Technol, 2004, 3: 178 DOI: 10.3321/j.issn:1001-3784.2004.03.012
    [36]
    He Y Q, Qiao B, Yang J M, et al. Research status and developing of metal injection molding. Adv Mater Res, 2013, 629(105): 100
    [37]
    李益民, 李云平. 金属注射成形原理与应用. 长沙: 中南大学出版社, 2004.

    Li Y M, Li Y P. Theory and Application of Metal Injection Molding. Changsha: Central South University Press, 2004.
    [38]
    Chen G, Cao P, Wen G, et al. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Mater Chem Phys, 2013, 139(2-3): 557 DOI: 10.1016/j.matchemphys.2013.01.057
    [39]
    郑礼清. 粉末注射成形催化脱脂研究[学位论文]. 长沙: 中南大学, 2009.

    Zheng L Q. Catalytic Debinding for Powder Injection Molding [Dissertation]. Changsha: Central South University, 2009.
    [40]
    German R M. 粉末注射成形. 长沙: 中南大学出版社, 2001.

    German R M. Powder Injectin Molding. Changsha: Central South University Press, 2001.
    [41]
    郭世柏, 张厚安, 张荣发, 等. 钛合金粉末注射成形溶剂脱脂工艺研究. 稀有金属材料与工程, 2007, 36(3): 537 DOI: 10.3321/j.issn:1002-185X.2007.03.040

    Guo S B, Zhang H A, Zhang R F, et al. Research on solvent debinding process of titanium alloy compacts by metal injection molding. Rare Metal Mater Eng, 2007, 36(3): 537 DOI: 10.3321/j.issn:1002-185X.2007.03.040
    [42]
    刘超, 孔祥吉, 况春江, 等. 生物医用二级纯钛注射成形研究. 粉末冶金技术, 2016, 34(4): 281 DOI: 10.3969/j.issn.1001-3784.2016.04.009

    Liu C, Kong X J, Kuang C J. Research on powder injection molding of grade 2 cp-titanium for biomedical application. Powder Metall Technol, 2016, 34(4): 281 DOI: 10.3969/j.issn.1001-3784.2016.04.009
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (989) PDF downloads (153) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return