AdvancedSearch
XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010
Citation: XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010

Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide

More Information
  • Corresponding author:

    XIAO Ping-an, E-mail: changcluj@163.com

  • Received Date: September 13, 2020
  • Available Online: October 28, 2021
  • Modern advanced degreasing and sintering furnace was applied to the industrial production of TiC-based high manganese steel bonded cemented carbide. The full binder removal, the effective control plus collection of Mn volatilized at high temperature, and the improvement of sintering ability during sintering process were realized by the technical innovation. The results show that, compared with the traditional equipment and technology, the density of the TM60 and TM52 alloys prepared by the upgrade technology is increased by 1.7%~1.8%, and both the TiC particle growing plus coarsening and the impurities caused by degreasing in the matrix are effectively reduced. In the case that the hardness is basically unchanged, the bending strength of the TM60 and TM52 alloys prepared by the upgrade technology is raised by more than 30%, and the impact toughness can be multiplied. The upgrade technology is beneficial to expand the application of TiC-based high manganese steel bonded cemented carbides and gives full play to the excellent impact abrasive wear resistance of the steel bonded cemented carbide.
  • [1]
    株洲硬质合金集团有限公司. 钢结硬质合金. 北京: 冶金工业出版社, 1982

    Zhuzhou Cemented Carbide Group Co. Ltd. Steel Bonded Cemented Carbide. Beijing: Metallurgical Industry Press, 1982
    [2]
    陈兆盈. TiC高锰钢结硬质合金及其应用. 湖南冶金, 1998(6): 1

    Chen Z Y. TiC high manganese steel-bonded cemented carbide and its application. Hunan Metall, 1998(6): 1
    [3]
    邹锡钧. 钢结硬质合金材料在模具上的应用. 模具工业, 1993(3): 50

    Zou X J. Application of steel-bonded cemented carbide in die. Die Mould Ind, 1993(3): 50
    [4]
    李良福. 钢结硬质合金在工业中的应用. 硬质合金, 2000, 7(2): 120 DOI: 10.3969/j.issn.1003-7292.2000.02.014

    Li L F. Application of steel-bonded carbide in industry. Cemen Carb, 2000, 7(2): 120 DOI: 10.3969/j.issn.1003-7292.2000.02.014
    [5]
    熊拥军. 高致密、高强度TiC钢结硬质合金的研究[学位论文]. 长沙: 中南大学, 2011

    Xiong Y J. Study on High-Denseness and High-Strength Steel Bonded Titanium Carbide [Dissertation]. Changsha: Central South University, 2011
    [6]
    李晨坤. 粗晶TiC基高锰钢结硬质合金的制备与性能研究[学位论文]. 长沙: 湖南大学, 2015

    Li C K. Study on the Preparation and Properties of Coarse Grained TiC-High Manganese Steel Bonded Carbide [Dissertation]. Changsha: Hunan University, 2015
    [7]
    甘可可. TiC钢结硬质合金致密化的研究[学位论文]. 长沙: 中南大学, 2002

    Gan K K. Study on Densification of TiC Steel-Bonded Cemented Carbide [Dissertation]. Changsha: Central South University, 2002
    [8]
    赵正, 刘福田, 李文虎. 铁硼合金和钼对钢结硬质合金烧结的影响. 机械工程材料, 2008, 32(2): 1 DOI: 10.3969/j.issn.1000-3738.2008.02.001

    Zhao Z, Liu F T, Li W H. Effect of Fe‒B alloy and Mo on sintering of steel based carbide. Mater Mech Eng, 2008, 32(2): 1 DOI: 10.3969/j.issn.1000-3738.2008.02.001
    [9]
    宾建林, 刘东华, 汤波, 等. 添加稀土的TiC基钢结硬质合金性能研究. 金属材料与冶金工程, 2013, 41(3): 3 DOI: 10.3969/j.issn.1005-6084.2013.03.001

    Bin J L, Liu D H, Tang B, et al. Effect of rare earth addition on microstructure and properties of TiC-based steel bonded carbide. Met Mater Metall Eng, 2013, 41(3): 3 DOI: 10.3969/j.issn.1005-6084.2013.03.001
    [10]
    熊拥军, 李溪滨, 刘如铁, 等. 高能球磨对新型TiC钢结硬质合金组织和性能影响的研究. 粉末冶金技术, 2006, 24(3): 187 DOI: 10.3321/j.issn:1001-3784.2006.03.006

    Xiong Y J, Li X B, Liu R T, et al. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide. Powder Metall Technol, 2006, 24(3): 187 DOI: 10.3321/j.issn:1001-3784.2006.03.006
    [11]
    肖平安, 李晨坤, 轩翠华, 等. 水韧处理对TiC基高锰钢结合金组织与性能的影响. 湖南大学学报(自然科学版), 2015, 42(12): 1

    Xiao P A, Li C K, Xuan C H, et al. Effect of water toughening treatment on microstructure and properties of high manganese steel bonded TiC. J Hunan Univ Nat Sci, 2015, 42(12): 1
    [12]
    熊拥军, 李溪滨, 刘如铁, 等. 热等静压工艺对新型TiC钢结硬质合金组织及磨损性能的影响. 润滑与密封, 2007, 32(4): 85 DOI: 10.3969/j.issn.0254-0150.2007.04.024

    Xiong Y J, Li X B, Liu R T, et al. Influences of hot isostatic pressing technology on microstructure and abrasion properties of a new steel bonded titanium carbide. Lubr Eng, 2007, 32(4): 85 DOI: 10.3969/j.issn.0254-0150.2007.04.024
    [13]
    李志华. 非均匀结构TiC基高锰钢结合金的制备与性能研究[学位论文]. 长沙: 湖南大学, 2017

    Li Z H. Study on the Preparation and Properties of Heterogeneous TiC-High Manganese Steel Bonded Carbides [Dissertation]. Changsha: Hunan University, 2017
    [14]
    范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状. 粉末冶金技术, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011

    Fan A P, Xiao P A, Li C K, et al. Research situation of TiC-based steel bonded carbide. Powder Metall Technol, 2013, 31(4): 298 DOI: 10.3969/j.issn.1001-3784.2013.04.011
    [15]
    何旭初, 陈兆盈. 钢结硬质合金的制备原理与技术. 长沙: 湖南科学技术出版社, 2015

    He X C, Chen Z Y. Preparation Principle and Technology of Steel-Bonded Cemented Carbide. Changsha: Hunan Science and Technology Press, 2015
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (459) PDF downloads (48) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return