Citation: | WANG Silun, CUI Zizhen, LIU Quanyi, XIE Fei, LIN Yansong. Cu–Cr–Mo alloys prepared by mechanical alloying and hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 475-480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090001 |
The Cu–9.3Cr–9.3Mo (mass fraction) powders were prepared by mechanical mixing and mechanical alloying, respectively, and the Cu–Cr–Mo alloys were pressed by hot isostatic pressing. The phase composition, organizational structure, and particle size of the powders were characterized by X-ray diffraction and laser particle size analysis. The relative density, hardness, conductivity, and microstructure of the alloys were measured. The results show that, the mechanical alloying process can induce the formation of Cu–Cr–Mo supersaturated solid solution, improve the degree of lattice distortion, and reduce the grain size and powder particle size. The prepared alloy blocks by mechanical alloying have the high hardness, ideal relative density, and electrical conductivity, showing the excellent comprehensive properties.
[1] |
姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望. 中国工程科学, 2020, 22(5): 84 DOI: 10.15302/J-SSCAE-2020.05.015
Jiang Y X, Lou H F, Xie H F, et al. Development status and prospects of advanced copper alloy materials. Strat Study CAE, 2020, 22(5): 84 DOI: 10.15302/J-SSCAE-2020.05.015
|
[2] |
李龙健, 于凤云, 李仁庚, 等. 高性能铜合金研究现状及发展趋势. 特种铸造及有色合金, 2021, 41(3): 293
Li L J, Yu F Y, Li R G, et al. Research status and development trend of high-performance copper alloys. Spec Cast Nonferrous Alloys, 2021, 41(3): 293
|
[3] |
赵海涛, 刘超. 时效时间对表面机械研磨处理Cu–4. 5Ti合金组织和硬度的影响. 粉末冶金技术, 2020, 38(2): 92
Zhao H T, Liu C. Effect of aging time on the microstructure and hardness of Cu–4.5Ti alloy by surface mechanical polishing. Powder Metall Technol, 2020, 38(2): 92
|
[4] |
曾昭锋, 周波涛, 熊宣雯, 等. SiCp/Cu复合材料的研究进展. 粉末冶金技术, 2021, 39(2): 184
Zeng Z F, Zhou B T, Xiong X W, et al. Research progress of SiCp/Cu composite. Powder Metall Technol, 2021, 39(2): 184
|
[5] |
石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4
Shi J L, Pei J, Zhang B P, et al. Progress in the preparation of thermoelectric materials by mechanical alloying combined with spark plasma sintering. Powder Metall Technol, 2021, 39(1): 4
|
[6] |
雷若姗, 陈广润, 徐时清, 等. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展. 材料导报, 2017, 31(21): 130
Lei R S, Chen G R, Xu S Q, et al. Preparation of nanocrystalline supersaturated solid solution by severe plastic deformation: a review. Mater Rev, 2017, 31(21): 130
|
[7] |
席生岐, 郑晓雪, 郑良栋, 等. 机械合金化制备高硬度导电Cu–Cr–Mo合金 // 第十三届全国典型零件热处理学术及技术交流会暨第十届全国热处理学会物理冶金学术交流会论文集. 伊春, 2015: 41
Xi S Q, Zheng X X, Zheng L D, et al. High hardness conductive Cu–Cr–Mo alloy prepared by mechanical alloying // The 13th National Typical Parts Heat Treatment Academic and Technical Exchange Conference and the 10th National Heat Treatment Society Physical Metallurgy Academic Exchange Conference Proceedings. Yichun, 2015: 41
|
[8] |
Kumar A, Pradhan S K, Jayasankar K, et al. Structural investigations of nanocrystalline Cu–Cr–Mo alloy prepared by high-energy ball milling. J Electron Mater, 2017, 46(2): 1339 DOI: 10.1007/s11664-016-5125-x
|
[9] |
Xi S, Zuo K, Li X, et al. Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr (Mo). Acta Mater, 2008, 56(20): 6050 DOI: 10.1016/j.actamat.2008.08.013
|
[10] |
Aguilar C, Guzmán D, Castro F, et al. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying. Mater Chem Phys, 2014, 146(3): 493 DOI: 10.1016/j.matchemphys.2014.03.060
|
[11] |
Patra A, Karak S K, Pal S. Effects of mechanical alloying on solid solubility. Adv Eng Forum, 2016, 15: 17 DOI: 10.4028/www.scientific.net/AEF.15.17
|
[12] |
Sun C, Hai X, Xi S, et al. New insights of solid-state alloying and amorphous-nanocrystalline cyclic phase transitions during Cr-40wt.% Mo powder milling. J Alloys Compd, 2018, 731: 667 DOI: 10.1016/j.jallcom.2017.10.083
|
[13] |
白小波, 王洪涛, 姚海龙, 等. 机械合金化过程中Fe–Al合金粉末的组织演变. 金属热处理, 2018, 43(12): 31
Bai X B, Wang H T, Yao H L, et al. Microstructure evolution of Fe–Al alloy powder during mechanical alloying. Heat Treat Met, 2018, 43(12): 31
|
[14] |
胡建华, 尚会森, 程呈, 等. 金属粉末压制成形理论与工艺进展. 热加工工艺, 2012, 41(20): 45
Hu J H, Shang H S, Cheng C, et al. Theory and process development of metal powder press forming. Hot Work Technol, 2012, 41(20): 45
|
[15] |
王德宝. 高性能耐磨铜基复合材料的制备与性能研究[学位论文]. 合肥: 合肥工业大学, 2008
Wang D B. Research on the Preparation and Performance of Advanced Wear-Resistant Copper Matrix Composites [Dissertation]. Hefei: Hefei University of Technology, 2008
|
[16] |
李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究. 粉末冶金技术, 2018, 36(2): 106
Li Y Y, Ni K Y, Zhu F W. Study on TiC particle-reinforced Cu matrix composites. Powder Metall Technol, 2018, 36(2): 106
|
[17] |
Adhikari K R. Electrical conductivity: Classical electron and quantum mechanical approaches. Himalayan Phys, 2014, 5: 31
|
[18] |
费维栋. 固体物理(第3版). 哈尔滨: 哈尔滨工业大学出版社, 2020
Fei W D. Solid State Physics. 3rd Ed. Harbin: Harbin Institute of Technology Press, 2020
|
[19] |
刘鹏, 张修庆, 武小记, 等. 机械合金化与热压烧结法制备Cu–Cr–Zr合金. 热加工工艺, 2012, 41(6): 14
Liu P, Zhang X Q, Wu X J, et al. Preparation of Cu–Cr–Zr alloy by mechanical alloying and hot-pressing sintering. Hot Working Technol, 2012, 41(6): 14
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |