Citation: | GUO Shuaidong, LU Lin, WU Wenheng, ZHANG Liang, WANG Jifen, XU Xiaolin. Research status of selective laser melting GH4169 alloys[J]. Powder Metallurgy Technology, 2023, 41(5): 449-456, 480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110008 |
The formation mechanism and process control of the common defects in selective laser melting GH4169 alloys were briefly introduced, such as spheroidization and holes. The effects of laser power, scanning rate, and powder thickness on the microstructure and mechanical properties of the GH4169 alloys during selective laser melting were emphatically analyzed, and the influences of heat treatment and particle reinforcement on the microstructure and mechanical properties of GH4169 alloy were investigated. Finally, the prospect of the selective laser melting GH4169 alloys was presented from the aspects of process control trend and material strengthening design. It was considered that the design and forming of the particle-reinforced GH4169 composites by selective laser melting were the effective way to further improve the performance of the GH4169 alloys.
[1] |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1
Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1
|
[2] |
Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs. Front Mech Eng, 2013, 8(3): 215 DOI: 10.1007/s11465-013-0248-8
|
[3] |
张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术. 材料工程, 2016, 44(2): 122
Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122
|
[4] |
李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向. 工程科学学报, 2019, 41(2): 159
Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159
|
[5] |
Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater Sci Eng A, 2019, 767: 138327 DOI: 10.1016/j.msea.2019.138327
|
[6] |
Ding R G, Huang Z W, Li H Y, et al. Electron microscopy study of direct laser deposited IN718. Mater Charact, 2015, 106: 324 DOI: 10.1016/j.matchar.2015.06.017
|
[7] |
王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368
Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368
|
[8] |
Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J Alloys Compd, 2018, 784: 182
|
[9] |
Popovich A A, Sufiiarov V S, Polozov I A, et al. Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment. Key Eng Mater, 2015, 651-653: 665 DOI: 10.4028/www.scientific.net/KEM.651-653.665
|
[10] |
Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett, 2016, 164: 428 DOI: 10.1016/j.matlet.2015.10.136
|
[11] |
陈飞. 选区激光熔化成形TiN/Inconel 718复合材料组织及力学性能研究[学位论文]. 长春: 吉林大学, 2020
Chen F. Study on Microstructures and Mechanical Properties of TiN /Inconel 718 Composites Fabricated by Selective Laser Melting [Dissertation]. Changchun: Jilin University, 2020
|
[12] |
Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater, 2015, 17(8): 1099 DOI: 10.1002/adem.201500158
|
[13] |
冯喆. 选区激光熔化成形Inconel718合金显微组织和高温力学性能的研究[学位论文]. 北京: 北京工业大学, 2018
Feng Z. Study on the Microstructure and High Temperature Mechanical Properties of Alloy Processed by SLM [Dissertation]. Beijing: Beijing University of Technology, 2018
|
[14] |
朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究. 粉末冶金技术, 2019, 37(2): 83
Zhu X C, Wei Q S, Sun C H, Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment. Powder Metall Technol, 2019, 37(2): 83
|
[15] |
张冬云, 高阳, 曹明, 等. SLM成形Inconel 718合金的组织性能调控研究. 上海航天, 2020, 37(3): 82
Zhang D Y, Gao Y, Cao M, et al. Study on regulation of microstructure and mechanical properties of SLM-processed Inconel 718 alloy. Aerosp Shanghai, 2020, 37(3): 82
|
[16] |
吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549
Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys, Powder Metall Technol, 2021, 39(6): 549
|
[17] |
刘泽程, 王国伟, 肖祥友, 等. 选择性激光熔化镍基高温合金的工艺优化. 粉末冶金技术, 2021, 39(1): 81
Liu Z C, Wang G W, Xiao X Y, et al. Process optimization of selective laser melting nickel-based superalloy. Powder Metall Technol, 2021, 39(1): 81
|
[18] |
许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能. 粉末冶金技术, 2021, 39(6): 505
Xu Y, Ban L, Xiao Z Y, et al. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting. Powder Metall Technol, 2021, 39(6): 505
|
[19] |
杨占尧, 赵敬云. 增材制造与3D打印技术及应用. 北京: 清华大学出版社, 2017
Yang Z Y, Zhao J Y. Additive Manufacturing and 3D Printing Technology and Applications. Beijing: Tsinghua University Press, 2017
|
[20] |
Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des, 2017, 131: 12 DOI: 10.1016/j.matdes.2017.05.065
|
[21] |
Teng Q, Li S, Wei Q S, et al. Investigation on the influence of heat treatment on Inconel 718 fabricated by selective laser melting: Microstructure and high temperature tensile property. J Manuf Processes, 2021, 61: 35 DOI: 10.1016/j.jmapro.2020.11.002
|
[22] |
李剑. IN718合金的选区激光熔化成形工艺及性能研究[学位论文]. 哈尔滨: 哈尔滨理工大学, 2018
Li J. Process and Properties of Ni-Based 718 Alloy Formed by Selective Laser Melting [Dissertation]. Harbin: Harbin University of Science and Technology, 2018
|
[23] |
贾清波. Ni基高温合金及其复合材料选区激光熔化成形工艺、组织及性能[学位论文]. 南京: 南京航空航天大学, 2015
Jia Q B, Selective Laser Melting Fabrication of Nickel-Based Superalloys and Its Composites: Process, Microstructure and Property [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015
|
[24] |
张颖, 顾冬冬, 沈理达, 等. INCONEL系镍基高温合金选区激光熔化增材制造工艺研究. 电加工与模具, 2014(4): 38
Zhang Y, Gu D D, Shen L D, et al. Study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy. Electromach Mould, 2014(4): 38
|
[25] |
Balbaa M, Mekhiel S, Elbestawi M, et al. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater Des, 2020, 193: 108818 DOI: 10.1016/j.matdes.2020.108818
|
[26] |
Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng, 2018, 735: 182 DOI: 10.1016/j.msea.2018.08.037
|
[27] |
张国会, 郭绍庆, 黄帅, 等. 选区激光熔化技术制备GH4169合金的致密度研究. 激光与光电子学进展, 2020, 57(3): 163
Zhang G H, Guo S Q, Huang S, et al. Relative density of GH4169 superalloy prepared by selective laser melting. Laser Optoelectron Prog, 2020, 57(3): 163
|
[28] |
Wang H Y, Wang B B, Wang L, et al. Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry, 2021, 18(3): 170 DOI: 10.1007/s41230-021-9011-7
|
[29] |
程勇. 激光选区熔化成形GH4169残余应力和变形研究[学位论文]. 武汉: 华中科技大学, 2019
Cheng Y. Study of the Residual Stress and Deformation of GH4169 Fabricated by Selective Laser Melting [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2019
|
[30] |
Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol, 2020, 381: 125136 DOI: 10.1016/j.surfcoat.2019.125136
|
[31] |
Lu Y J, Wu S Q, Gan Y L, et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol, 2015, 75: 197 DOI: 10.1016/j.optlastec.2015.07.009
|
[32] |
Sufiiarov V S, Popovich A A, Borisov E V, et al. The effect of layer thickness at selective laser melting. Proced Eng, 2017, 174: 126 DOI: 10.1016/j.proeng.2017.01.179
|
[33] |
杜胶义. GH4169镍基合金粉末选区激光熔化基础工艺研究[学位论文]. 太原: 中北大学, 2014
Du J Y. Research on Process Experiment of Selective Laser Melting with GH4169 Nickel-Based Alloy Powder [Dissertation]. Taiyuan: North University of China, 2014
|
[34] |
贾炅昱, 刘奋成, 刘丰刚, 等. 选区激光熔化增材制造Inconel 718合金的孔隙缺陷和拉伸性能. 热加工工艺, 2020, 49(18): 1
Jia J Y, Liu F C, Liu F G, et al. Porosity defects and tensile property of Inconel 718 superalloy by selective laser melting additive manufacturing. Hot Working Technol, 2020, 49(18): 1
|
[35] |
Yang H H, Meng L, Luo S C, et al. Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power. J Alloys Compd, 2020, 828: 154473 DOI: 10.1016/j.jallcom.2020.154473
|
[36] |
魏建锋, 武美萍, 韩基泰. 扫描策略对选区激光熔化成形Inconel 718表面质量的影响机制. 应用激光, 2020, 40(4): 621
Wei J F, Wu M P, Han J T. Mechanism of the effect of scanning strategy on the surface quality of Inconel 718 formed by SLM. Appl Laser, 2020, 40(4): 621
|
[37] |
Choi J P, Shin G H, Yang S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 DOI: 10.1016/j.powtec.2017.01.030
|
[38] |
Liu S Y, Li H Q, Qin C X, et al. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater Des, 2020, 191: 108642 DOI: 10.1016/j.matdes.2020.108642
|
[39] |
Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J Alloys Compd, 2014, 585: 713 DOI: 10.1016/j.jallcom.2013.09.171
|
[40] |
闫岸如, 杨恬恬, 王燕灵, 等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能. 光学精密工程, 2015, 23(6): 1695 DOI: 10.3788/OPE.20152306.1695
Yan A R, Yang T T, Wang Y L, et al. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy. Opt Precis Eng, 2015, 23(6): 1695 DOI: 10.3788/OPE.20152306.1695
|
[41] |
Yi J H, Kang J W, Wang T J, et al. Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. J Alloys Compd, 2019, 786: 481 DOI: 10.1016/j.jallcom.2019.01.377
|
[42] |
Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy. J Mater Res Technol, 2021, 11: 392 DOI: 10.1016/j.jmrt.2021.01.024
|
[43] |
Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A, 2016, 669: 246 DOI: 10.1016/j.msea.2016.05.089
|
[44] |
Pröbstle M, Neumeier S, Hopfenmüller J, et al. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater Sci Eng A, 2016, 674: 299 DOI: 10.1016/j.msea.2016.07.061
|
[45] |
Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 °C solid solution + double ageing. Vacuum, 2017, 145: 112 DOI: 10.1016/j.vacuum.2017.08.044
|
[46] |
Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy. Mater Sci Eng A, 2021, 801: 140427 DOI: 10.1016/j.msea.2020.140427
|
[47] |
Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 DOI: 10.1016/j.pmatsci.2019.04.006
|
[48] |
Nguyen Q B, Zhu Z, Chua B W, et al. Development of WC-Inconel composites using selective laser melting. Arch Civil Mech Eng, 2018, 18(4): 1410 DOI: 10.1016/j.acme.2018.05.001
|
[49] |
Xia M J, Gu D D, Ma C L, et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting. J Alloys Compd, 2018, 747: 684 DOI: 10.1016/j.jallcom.2018.03.049
|
[50] |
Gu D D, Zhang H M, Dai D H, et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Composites Part B, 2018, 163: 585
|
[51] |
Wang Y C, Shi J, Wang Y. Reinforcing Inconel 718 superalloy by nano-TiC particles in selective laser melting // ASME 2015 International Manufacturing Science Engineering Conference. Charlotte, 2015: 8
|
[52] |
Wang Y C, Shi J, Lu S Q, et al. Selective laser melting of graphene-reinforced Inconel 718 superalloy: evaluation of microstructure and tensile performance. J Manuf Sci Eng, 2017, 139(4): 041005 DOI: 10.1115/1.4034712
|
[53] |
Xiao W H, Lu S Q, Wang Y C, et al. Mechanical and tribological behaviors of graphene/Inconel 718 composites. Trans Nonferrous Met Soc China, 2018, 28(10): 1958
|
[54] |
Ho I T, Hsu T H, Chang Y J, et al. Effects of CoAl2O4 inoculants on microstructure and mechanical properties of IN718 processed by selective laser melting. Addit Manuf, 2020, 35: 101328
|
[55] |
Hassanin A E, Scherillo F, Prisco U, et al. Selective laser melting of Cu-inconel 718 powder mixtures. J Manuf Processes, 2020, 59: 679 DOI: 10.1016/j.jmapro.2020.10.039
|