AdvancedSearch
MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016
Citation: MA Xiangdong, CHENG Junyi, LONG Anping, YANG Jinlong, GUO Jianzheng, FENG Ganjiang. Microstructure and mechanical properties of a novel nickel-based powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5): 434-441. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040016

Microstructure and mechanical properties of a novel nickel-based powder superalloy

More Information
  • Corresponding author:

    GUO Jianzheng, E-mail: guo_jianzheng@qq.com

  • Received Date: June 04, 2023
  • Accepted Date: June 04, 2023
  • Available Online: June 13, 2023
  • A novel nickel-based powder metallurgy superalloy FGH4113A (WZ-A3) was used to manufacture the full-size turbine disks by the process route of “vacuum induction melting + argon atomization + hot isostatic pressing + hot extrusion + isothermal forging”. The microstructure and mechanical properties of the forged FGH4113A alloys under the different heat treatment conditions were systematically studied. The results show that, the full-size turbine disks prepared by FGH4113A alloy have the good macro morphology and homogeneous grain structure. After the subsolvus heat treatment, the average grain size is ASTM 11~13, the yield strength at room temperature and 550 ℃ are 1249 and 1185 MPa, the tensile strength are 1674 and 1656 MPa, and the elongation after fracture are 23.5% and 19.5%, respectively. The mean fatigue life under the conditions of temperature 700 ℃, strain range 0~0.8% and loading frequency 0.33 Hz is 35000 cycles. After the supersolvus heat treatment, the average grain size is ASTM 6~8, the yield strength at 700 ℃ and 800 ℃ are 1063 and 966 MPa, the tensile strength are 1403 and 1112 MPa, and the elongation after fracture are 17.5% and 12.0%, respectively. The mean creep life under the conditions of temperature 800 ℃, stress 330 MPa and creep elongation 0.2% is 384 h. The crack propagation rate under the conditions of temperature 700 ℃ and stress intensity factor range 30 MPa·m0.5 is less than 5×10−4 mm·cycle−1.

  • [1]
    张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展. 金属学报, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119

    Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metall Sinica, 2019, 55(9): 1133 DOI: 10.11900/0412.1961.2019.00119
    [2]
    Reed R C. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2008
    [3]
    傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.007

    Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [4]
    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387

    Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387
    [5]
    Qiu C L, Wu X H, Mei J F, et al. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J Alloys Compd, 2013, 578: 454 DOI: 10.1016/j.jallcom.2013.06.045
    [6]
    黄海亮. 先进PM高温合金FGH98合金制备和性能表征相关基础问题的研究[学位论文]. 北京: 北京科技大学, 2020

    Huang H L. Research on Related Fundamental Issues of Preparation and Property Characterization of Advanced PM Superalloy FGH98 [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [7]
    程俊义, 熊江英, 刘朝峰, 等. 一种新型第三代镍基粉末高温合金亚固溶热处理调控γ'相分布的研究. 稀有金属材料与工程, 2023, 52(2): 699 DOI: 10.12442/j.issn.1002-185X.20220067

    Chen J Y, Xiong J Y, Liu C F, et al. Sub-solvus heat treatment study on the γ' distribution of novel nickel-based superalloy. Rare Met Mater Eng, 2023, 52(2): 699 DOI: 10.12442/j.issn.1002-185X.20220067
    [8]
    程俊义, 朱立华, 马向东, 等. 一种新型镍基粉末高温合金的过固溶热处理研究. 稀有金属材料与工程, 2022, 51(10): 3722

    Chen J Y, Zhu L H, Ma X D, et al. Super-solvus heat treatment study of novel nickel-based superalloy. Rare Met Mater Eng, 2022, 51(10): 3722
    [9]
    马向东, 何英杰, 李远, 等. 一种新型镍基粉末高温合金等温热压缩过程中的超塑性变形行为研究. 稀有金属材料与工程, 2022, 51(9): 3307

    Ma X D, He Y J, Li Y, et al. Superplastic deformation behavior of nickel-based powder superalloy during isothermal hot compression. Rare Met Mater Eng, 2022, 51(9): 3307
    [10]
    杨金龙, 马向东, 李远, 等. 一种新型镍基粉末高温合金不同状态热变形行为. 稀有金属材料与工程, 2022, 51(2): 651

    Yang J L, Ma X D, Li Y, et al. Thermal deformation behavior of novel ni-based PM superalloy under different initial conditions. Rare Met Mater Eng, 2022, 51(2): 651
    [11]
    Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3. NASA/TM, 2002: 211796
    [12]
    Gabb T P, Gayda J, Kantzos P T, et al. Thermal and mechanical property characterization of the advanced disk alloy LSHR. NASA/TM, 2005: 213645
    [13]
    Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy. J Alloys Compd, 2019, 805: 1254 DOI: 10.1016/j.jallcom.2019.07.221
    [14]
    Gayda J, Furrer D. Dual-micro structure heat treatment. Adv Mater Processes, 2003, 161(7): 36
    [15]
    Mitchell R J, Lemsky J A, Ramanathan R, et al. Process development and microstructure and mechanical property evaluation of a dual microstructure heat treated advanced nickel disc alloy // Superalloys 2008. Champion, 2008: 347
    [16]
    郭建亭. 高温合金材料学. 北京: 科学出版社, 2008

    Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008
    [17]
    Mcdowell D L. Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R, 2008, 62(3): 67 DOI: 10.1016/j.mser.2008.04.003
    [18]
    Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 DOI: 10.1016/j.ijfatigue.2020.105887
    [19]
    Bache M R, O’Hanlon J, Child D J, et al. High temperature fatigue behaviour in an advanced nickel based superalloy: The effects of oxidation and stress relaxation at notches. Theor Appl Fract Mech, 2016, 84: 64 DOI: 10.1016/j.tafmec.2016.03.007
    [20]
    Jiang R, Zhang L C, Zhang W T, et al. Low cycle fatigue and stress relaxation behaviours of powder metallurgy Ni-based superalloy FGH4098. Mater Sci Eng A, 2021, 87: 141421
    [21]
    Liu L Z, Gao Y F, Wu X H, et al. High-temperature fatigue crack growth behaviour of GH4169 alloys with different heat treatment methods. Int J Fatigue, 2022, 236(2): 161
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (957) PDF downloads (75) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return