Citation: | HOU Weiqiang, WU Jiaxin, MENG Jie, LIANG Jingjing, LI Jinguo. Atomization simulation and preparation of GH3536 powders at different atomization pressures[J]. Powder Metallurgy Technology, 2023, 41(5): 410-419. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040018 |
Spherical GH3536 alloy powders were prepared by vacuum induction-melting gas atomization method at the different atomization pressures (7, 8, 9 MPa). The region below the nozzle was numerically simulated by multiphase flow model and discrete phase model, and the primary and secondary atomization processes at the different atomization pressures were reproduced. In the results, the flow velocity and stagnation pressure in the recirculation zone increase with the increase of atomization pressure. With the increase of atomization pressure, the powder particle size decreases continuously. The simulation results are similar with the experimental results, verifying the reliability of the atomization model. The increase of atomization pressure can increase the yield of fine powders, but the decrease of particle size and the change of particle morphology may directly affect the powder flowability. The powders prepared at the atomization pressure of 8 MPa show the best flowability and the optimum apparent density, which are 14.34 (s·50g−1) and 4.728 g·cm−3, respectively.
[1] |
Liu L, Meng J, Liu J L, et al. Influence of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature. J Mater Sci Technol, 2019, 35(9): 1917 DOI: 10.1016/j.jmst.2019.05.026
|
[2] |
Hou G C, Xie J, Yu J J, et al. Room temperature tensile behaviour of K640S Co-based superalloy. Mater Sci Technol, 2019, 35(5): 350
|
[3] |
Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A, 2017, 701(7): 344
|
[4] |
Mireles J, Kim H, Lee H, et al. Development of a fused deposition modeling system for low temperature metal alloys. J Electron Packag, 2013, 13(5): 18
|
[5] |
孙晓峰, 宋巍, 梁静静, 等. 激光增材制造高温合金材料与工艺研究进展. 金属学报, 2021, 57(11): 1471 DOI: 10.11900/0412.1961.2021.00371
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing. Acta Metall Sinica, 2021, 57(11): 1471 DOI: 10.11900/0412.1961.2021.00371
|
[6] |
Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni−Co base superalloy made by specific additive manufacturing process. Mater Sci Eng A, 2020, 786(1): 139438
|
[7] |
郑明月. 气雾化法制备增材制造用钛合金粉末研究[学位论文]. 北京: 北京科技大学, 2019
Zheng M Y. Gas Atomization Technology Research of Titanium Alloy Powders for Additive Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[8] |
雷囡芝. 等离子旋转电极雾化法制备球形金属粉末的工艺及性能研究[学位论文]. 西安: 西安理工大学, 2019
Lei N Z. Study on Process and Properties of Spherical Metal Powder Prepared by Plasma Rotating Electrode Process [Dissertation]. Xi’an: Xi’an University of Technology, 2019
|
[9] |
张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387
Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387
|
[10] |
Antipas. Review of gas atomisation and spray forming phenomenology. Powder Metall, 2013, 56(4): 317 DOI: 10.1179/1743290113Y.0000000057
|
[11] |
Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci, 2006, 38(2): 282 DOI: 10.1016/j.commatsci.2006.02.012
|
[12] |
Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technol, 2020, 367: 724 DOI: 10.1016/j.powtec.2020.04.030
|
[13] |
张建文, 杨玉芳, 孙亚楠, 等. 液气组合雾化过程的多相流动研究. 粉末冶金技术, 2012, 30(6): 403 DOI: 10.19591/j.cnki.cn11-1974/tf.2012.06.001
Zhang J W, Yang Y F, Sun Y N, et al. Multiphase fluid flow in an atomization process by combined liquid and gas flows. Powder Metall Technol, 2012, 30(6): 403 DOI: 10.19591/j.cnki.cn11-1974/tf.2012.06.001
|
[14] |
夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41
Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sinica, 2018, 67(17): 41
|
[15] |
郭快快, 陈进, 刘常升, 等. 数值模拟喷射夹角对VIGA制粉雾化过程的影响. 东北大学学报(自然科学版), 2020, 41(5): 729
Guo K K, Chen J, Liu C S, et al. Numerical simulation of the intersection angle influence on atomization process of powders produced by VIGA. J Northeast Univ Nat Sci, 2020, 41(5): 729
|
[16] |
Thompson J, Hassan O, Rolland S, et al. The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser. Powder Technol, 2016, 291: 75 DOI: 10.1016/j.powtec.2015.12.001
|
[17] |
Zhao W, Cao F, Ning Z, et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer. Comput Chem Eng, 2012, 40(11): 58
|
[18] |
Aydin O, Unal R. Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior. Comput Fluids, 2010, 42(1): 37
|
[19] |
Kim D, Kim Y, Lee H, et al. Gas atomization parametric study on the VIGA-CC based synthesis of titanium powder. Arch Metall Mater, 2020, 65(3): 997
|
[20] |
Shi Y T, Lu W Y, Sun W H, et al. Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment. J Mater Sci Technol, 2022, 105: 203 DOI: 10.1016/j.jmst.2021.06.075
|
[21] |
Mills K. Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Cambridge: Woodhead Publishing Ltd and ASM International, 2002
|
[22] |
Ting J, Anderson E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon. Mater Sci Eng A, 2004, 379(1): 264
|
1. |
鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .
![]() |