AdvancedSearch
ZHU Lei, WANG Yicheng, ZHANG Hao, CHEN Yang, JIANG Rong, SONG Yingdong. In-situ observation of short crack growth behavior for powder superalloys with different gradient grain microstructures[J]. Powder Metallurgy Technology, 2023, 41(5): 420-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050009
Citation: ZHU Lei, WANG Yicheng, ZHANG Hao, CHEN Yang, JIANG Rong, SONG Yingdong. In-situ observation of short crack growth behavior for powder superalloys with different gradient grain microstructures[J]. Powder Metallurgy Technology, 2023, 41(5): 420-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050009

In-situ observation of short crack growth behavior for powder superalloys with different gradient grain microstructures

More Information
  • Corresponding author:

    CHEN Yang, E-mail: fengli9572@sina.com (Chen Y)

    JIANG Rong, rjiang@nuaa.edu.cn (Jiang R)

  • Received Date: July 27, 2023
  • Accepted Date: July 27, 2023
  • Available Online: July 27, 2023
  • The fatigue crack initiation and short crack propagation behavior of a 3rd generation powder superalloy with the different microstructures were studied by in-situ scanning electron microscope (SEM) observation. The effects of microstructures at the wheel rim (coarse grain structure), wheel centre (fine grain structure), and grain transition zone (gradient grain tructure) of the dual performance powder turbine disk on the fatigue short crack propagation were investigated. The results show that, the crack prefers to nucleate from the first hardening phase at the notch. The gradient microstructure exhibits the multiple cracking at the grain boundaries. For the specimens with the gradient microstructure, the short crack growth behavior at room temperature is significantly affected by the microstructures, and the fatigue crack growth rate shows the large fluctuation. At the lower stress intensity factor range, the crack propagation rate of the coarse grains is higher than that of the fine grains. With the increase of stress intensity factor range, the crack propagation rate of the fine grains is increased faster and finally higher than that of the coarse grains, which mainly attributes to the competition mechanism of the long slip path, the enhanced slip reversibility, the few grain boundary barriers, and the reduced discontinuity.

  • [1]
    张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展. 粉末冶金技术, 2022, 40(5): 387

    Zhang Q, Zheng L, Xu W Y, et al. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics. Powder Metall Technol, 2022, 40(5): 387
    [2]
    田高峰, 陈阳, 汪煜. 梯度组织FGH96合金残余枝晶区的组织特征研究. 粉末冶金技术, 2018, 36(6): 403

    Tian G F, Chen Y, Wang Y. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure. Powder Metall Technol, 2018, 36(6): 403
    [3]
    刘光旭, 王晓峰, 杨杰, 等. 热处理对镍基粉末高温合金扩散连接界面组织演变及性能的影响. 粉末冶金技术, 2022, 40(3): 218

    Liu G X, Wang X F, Yang J, et al. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface. Powder Metall Technol, 2022, 40(3): 218
    [4]
    罗学军, 王珏, 赵巍, 等. FGH91粉末高温合金与K418B铸造叶环热等静压扩散连接研究. 粉末冶金技术, 2021, 39(4): 291 DOI: 10.19591/j.cnki.cn11-1974/tf.2021010002

    Luo X J, Wang J, Zhao W, et al. Research on diffusion bonding of FGH91 powder metallurgy superalloy and K418B casted blade by hot isostatic pressing. Powder Metall Technol, 2021, 39(4): 291 DOI: 10.19591/j.cnki.cn11-1974/tf.2021010002
    [5]
    Miao J, Pollock T M, Wayne J J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater, 2009, 57(20): 5964 DOI: 10.1016/j.actamat.2009.08.022
    [6]
    Pang H T, Reed P A S. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy. Int J Fatigue, 2008, 30(10): 2009
    [7]
    Jiang R, Song Y D, Reed P A S. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 DOI: 10.1016/j.ijfatigue.2020.105887
    [8]
    Pineau A, Mcdowell D L, Busso E P, et al. Failure of metals II: Fatigue. Acta Mater, 2016, 107: 484 DOI: 10.1016/j.actamat.2015.05.050
    [9]
    Gao Y, Stölken J S, Kumar M, et al. High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character. Acta Mater, 2007, 55(9): 3155 DOI: 10.1016/j.actamat.2007.01.033
    [10]
    Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment? Corros Sci, 2018, 139: 141 DOI: 10.1016/j.corsci.2018.05.001
    [11]
    Kitaguchi H S, Li H Y, Evans H E, et al. Oxidation ahead of a crack tip in an advanced Ni-based superalloy. Acta Mater, 2013, 61(6): 1968 DOI: 10.1016/j.actamat.2012.12.017
    [12]
    Pang H T, Reed P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li. Mater Sci Eng A, 2007, 448(1): 67
    [13]
    Zhang L C, Jiang R, Wang Y C, et al. Effects of microstructure and temperature on short fatigue crack propagation behaviour of powder metallurgy superalloy FGH4098 in vacuum. Mater Sci Eng A, 2022, 852: 143637 DOI: 10.1016/j.msea.2022.143637
    [14]
    张冬阁. 某镍基粉末高温合金裂纹扩展机理与模型研究[学位论文]. 南京: 南京航空航天大学, 2019

    Zhang D G. Crack Propagation Mechanism and Model of a Nickel-base Powder Superalloy [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
    [15]
    万煜玮, 周斌, 胡绪腾, 等. 某镍基粉末合金高温疲劳裂纹扩展行为与模型研究. 推进技术, 2023, 44(2): 262

    Wan Y W, Zhou B, Hu X T, et al. High temperature fatigue crack growth behavior and model of a nickel-based powder metallurgy superalloy. J Propul Technol, 2023, 44(2): 262
    [16]
    Ma W B, Liu G Q, Hu B F, et al. Effect of Hf on carbides of FGH4096 superalloy produced by hot isostatic pressing. Mater Sci Eng A, 2013, 587: 313 DOI: 10.1016/j.msea.2013.05.015
    [17]
    Kim D, Jiang R, Evangelou A, et al. Effects of γʹ size and carbide distribution on fatigue crack growth mechanisms at 650°C in an advanced Ni-based superalloy. Int J Fatigue, 2021, 145: 106086 DOI: 10.1016/j.ijfatigue.2020.106086
    [18]
    Jiang R, Karpasitis N, Gao N, et al. Effects of microstructures on fatigue crack initiation and short crack propagation at room temperature in an advanced disc superalloy. Mater Sci Eng A, 2015, 641: 148 DOI: 10.1016/j.msea.2015.05.065
    [19]
    Lu Y W, Lupton C, Zhu M L, et al. In situ experimental study of near-tip strain evolution of fatigue cracks. Exp Mech, 2015, 55(6): 1175 DOI: 10.1007/s11340-015-0014-4
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2138) PDF downloads (52) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return